Piecewise Linear Solution Paths for Para- metric Piecewise Quadratic Programs with Application to Direct Weight Optimization
نویسنده
چکیده
Recently, pathfollowing algorithms for parametric optimization problems with piecewise linear solution paths have been developed within the field of regularized regression. This paper presents a generalization of these algorithms to a wider class of problems, namely a class of parametric piecewise quadratic programs and related problems. It is shown that the approach can be applied to the nonparametric system identification method Direct Weight Optimization (DWO) and be used to enhance the computational efficiency of this method. The most important design parameter in the DWO method is a parameter (λ) controlling the bias-variance trade-off, and the use of parametric optimization with piecewise linear solution paths means that the DWO estimates can be efficiently computed for all values of λ simultaneously. This allows for designing computationally attractive adaptive bandwidth selection algorithms. One such algorithm for DWO is proposed and demonstrated in two examples.
منابع مشابه
Piecewise Linear Solution Paths for Parametric Piecewise Quadratic Programs
Recently, pathfollowing algorithms for parametric optimization problems with piecewise linear solution paths have been developed within the field of regularized regression. This paper presents a generalization of these algorithms to a wider class of problems, namely a class of parametric piecewise quadratic programs and related problems. By using pathfollowing algorithms that exploit the piecew...
متن کاملClose interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program
The fuzzy approach has undergone a profound structural transformation in the past few decades. Numerous studies have been undertaken to explain fuzzy approach for linear and nonlinear programs. While, the findings in earlier studies have been conflicting, recent studies of competitive situations indicate that fractional programming problem has a positive impact on comparative scenario. We pro...
متن کاملConvex parametric piecewise quadratic optimization: Theory, Algorithms and Control Applications
In this paper we study the problem of parametric minimization of convex piecewise quadratic functions. Our study provides a unifying framework for convex parametric quadratic and linear programs. Furthermore, it extends parametric programming algorithms to problems with piecewise quadratic cost functions, paving the way for new applications of parametric programming in dynamic programming and o...
متن کاملApproximate Solution of Sensitivity Matrix of Required Velocity Using Piecewise Linear Gravity Assumption
In this paper, an approximate solution of sensitivity matrix of required velocity with final velocity constraint is derived using a piecewise linear gravity assumption. The total flight time is also fixed for the problem. Simulation results show the accuracy of the method. Increasing the midway points for linearization, increases the accuracy of the solution, which this, in turn, depends on the...
متن کاملEnlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کامل